Exploring the Nature of the 2016 Gamma-Ray Emission in the Blazar 1749+096

Dae-Won Kim¹, Sascha Trippe¹, Sang-Sung Lee^{2,3}, Jae-Young Kim⁴, Juan-Carlos Algaba¹, Jeffrey Hodgson², Jongho Park¹ Motoki Kino⁵, Guang-Yao Zhao², Kiyoaki Wajima², Jee Won Lee², and Sincheol Kang^{2,3}

¹Seoul National University (Korea) / ²KASI (Korea) / ³UST (Korea) / ⁴MPIfR (Germany) / ⁵Kogakuin University (Japan) MNRAS 480, 2324-2333 (2018) / dwkim@astro.snu.ac.kr

Recent Fermi-Large Area Telescope light curves indicate an active γ -ray state spanning about five months from 2016 June to 2016 October in the BL Lac object 1749+096 (OT 081). During this period, we find two notable γ -ray events: an exceptionally strong outburst followed by a significant enhancement (local peak). In this study, we analyze multi-waveband light curves (radio, optical, X-ray, and γ -ray) plus very long baseline interferometry (VLBI) data to investigate the nature of the γ -ray events. The γ -ray outburst coincides with flux maxima at longer wavelengths. We find a spectral hardening of the γ -ray photon index during the γ -ray outburst. The photon index shows a transition from a softer-when-brighter to a harder-when-brighter trend at around 1.8 x 10^{-7} ph cm⁻² s⁻¹. We see indication that both the γ -ray outburst and the subsequent enhancement precede the propagation of a polarized knot in a region near the VLBI core. We conclude that both γ -ray events are caused by the propagation of a disturbance in the mm-wave core.

Scientific Background

More than 70 % of γ -ray sources in the sky are now identified as Blazar. It is generally supposed that blazars radiate the γ -ray emission in their relativistic jet [9]. However, the physical processes and the origin of the γ -rays in the jets are still a matter of debate [5]. In this study, we explore these questions in the blazar 1749+096 with the data: KVN, OVRO, and VLBA (radio) / ASAS-SN (optical) / Swift-XRT (X-ray) / Fermi-LAT (γ -ray).

Left: γ-ray sky centering on the BL Lac object 1749+096 (RA: 267.89 & DEC: 9.65 in degrees) observed by the LAT at 0.1 - 300 GeV.

Right: Parsec-scale radio jet image of 1749+096 observed by the VLBA at 43 GHz (monitored by Boston University group; BU).

Variability of 1749+096 in 2016

The BL Lac object 1749+096 (OT 081; $z\sim0.32$) is a flat spectrum compact radio source [8], known to have Doppler factor of ~17.7 and viewing angle of $\sim2.5^{\circ}$. 1749+096 was flaring at γ -rays (0.1 - 300 GeV) in the mid-2016 (June to October).

- •A strong outburst (2016 July 19) and a local peak (2016 October 2) at γ -rays.
- •The γ -ray outburst coincides with flux maxima at longer wavelengths.
- \bullet Positive correlations between γ -ray and longer wavelengths during the period.

Left: Multi-waveband light curves. Green shaded region indicates the γ -rays flaring period (2016 June to 2016 October).

Right: Linear correlations (Pearson & Spearman) of the emissions during the period.

Properties of the y-rays

- •A clear spectral hardening before the outburst which is rare in BL Lac objects.
- •Softer-when-brighter trend up to 1.7 x 10^{-7} ph cm⁻² s⁻¹ with $r_P \sim -0.86$.

Left: Evolution of the photon index Γ , defined as dN/dE \propto E^{+ Γ}. The vertical line indicates the γ -ray outburst.

Right: The photon index (weekly bin) as function of γ -ray flux.

Activity of the Radio Jet

- Evolution of the jet around the time of the two γ -ray events in 2016. (June 11, July 5, July 31, September 5, October 6, October 23, and November 28)
- •A polarized knot propagating from the BU core was detected in both cases.
- •The highest PI of \sim 230 mJ & an EVPA rotation by \sim 32 in 2016 July 31.

Top: VLBA (BU) maps of 1749+096 at 43 GHz. Linearly polarized flux (colour scale) and electric vector position angle (EVPA; black line segments) plotted over total intensity structure (contours). The cyan arrows represent the two γ -ray events: the outburst in 2016 July and the enhancement in 2016 October. The size of the restored beam is 0.25 x 0.25 mas (*bottom-left*), contour levels increase by factors of two from 0.25 % to 64 %, plus 85 % of the total intensity peak.

Left: Flux evolution of the core & total flux (*top*) and the jet component J1 which is quasistationary (*bottom*). Polarized intensity and EVPA of the polarized knot (*middle*). The vertical line indicates the γ -ray outburst. **Right:** Pairwise spectral indices α ($S_v \propto v^{\alpha}$) of 1749+096 at radio wavelengths observed in 2016. Here, the two γ -ray events are indicated by two vertical lines.

Conclusions & References

We suggest the parsec-scale scenario that a moving disturbance causes the γ -ray events as it passes through the mm-wave core [2]. We summarize our observational results as follow.

- For the γ -ray outburst, a same emitting region is expected.
- \rightarrow The outbursts at mm-wave to γ -rays are considered to be simultaneous [3].
- → Possible exception might be the peak of OVRO (around 5 days delayed).
- •The connection between the γ -ray outburst and a growing shock.
- → The clear spectral hardening indicates shock acceleration [6].
- → The abundant polarized emission can be explained by growing shock [7].
- We find a softer-when-brighter trend at γ -rays with $r_P \sim -0.86$.
- \rightarrow A transition point is assumed to be around $\sim 1.8 \times 10^{-7}$ ph cm⁻² s⁻¹.
- → Still unclear the physical mechanisms behind it [1].
- •The passage of a propagating disturbance through the mm-wave core.
- \rightarrow The ejection of a polarized knot preceding the γ -ray events.
- \rightarrow The changes in PI & EVPA: a propagating oblique shock in a blazar jet? [4]. \rightarrow The timing of the γ -ray outburst and total intensity of the core and the J1.
- •The γ -ray enhancement: smaller Doppler factor and energization?
- Probably similar processes to the a ray outburst with the polarized knot
- \rightarrow Probably, similar processes to the γ -ray outburst with the polarized knot. \rightarrow But, do not show any notable clues (e.g., counterparts at longer wavelengths).

Ref.:

[1] Abdo et al. 2010, ApJ, 721, 1425[2] Agudo et al. 2011, ApJ, 735, 10[3] Casadio et al. 2015, ApJ, 813, 51[4] Hughes et al. 2011, ApJ, 735, 81

[5] Jorstad et al. 2013, ApJ, 773, 147

[6] Kushwaha et al. 2014, ApJ, 796, 61[7] Leon-Tavares et al. 2012, ApJ, 754, 23[8] Lu et al. 2012, A&A, 544, 89

[9] Marscher et al. 2008, Nature, 452, 966